TSTOOL home page | TSTOOL documentation page | TSTOOL link page

next up previous contents
Next: 6.23 Class achse Up: 6.22 Class core Previous: 6.22.2 Attributes

Subsections

6.22.3 Member functions


6.22.3.1 acf

Syntax: Input Arguments: acf calculates the autocorrelation function of cin via fft of length m.


6.22.3.2 amutual2

Syntax: Input Arguments: amutual2 calculates the mutual information of a time series against itself, with increasing lag uses equidistant partitioning to compute histograms.


6.22.3.3 compare

Syntax: Input Arguments: compare compare two signals whether they have equal values slight differences due to rounding errors are ignored depending on the value of tolerance when signals are found to be not equal, a zero is returned.


6.22.3.4 core

core class constructor Syntax: Input Arguments: A core object contains the pure data part of a signal object.
Methods: ndim dlens data


6.22.3.5 data

Syntax: Input Arguments: Return signal's data values
With no extra arguments, data returns the data array of a signal object
Another possible call is : data(signal, ':,:,1:20')


6.22.3.6 db

Syntax: Input Arguments: compute decibel values to reference value ref and scaling factor (10 or 20) scf


6.22.3.7 diff

Syntax: Input Arguments: nth numerical derivative along dimension 1 when data was sampled equidistantly with samplerate = 1/delta


6.22.3.8 display

Syntax: Input Arguments:


6.22.3.9 dlens

Syntax: Input Arguments: returns sizes of dimensions (same as function 'size' under matlab)


6.22.3.10 embed

Syntax: Input Arguments: Create time delay vectors with dimension dim, delay is measured in samples
The input must be a scalar time series
The result is a n by dim array, each row contains the coordinates of one point


6.22.3.11 filterbank

Syntax: Input Arguments:

calculates the Wavelet Packet Transform of cin. It can be obtained using a selection algorithm function. It may be switched from one format to another using CHFORMAT. The different bands are sorted according to ORDER and BASIS. If BASIS is omitted, the output is a matrix with the coefficients obtained from all the wavelet packet basis in the library. Each column in the matrix represents the outputs for a level in the tree. The first column is the original signal. If the length of X is not a power of 2, the columns are zero padded to fit the different lengths. Run the script 'BASIS' for help on the basis format.
See also: IWPK, CHFORMAT, PRUNEADD, PRUNENON, GROWADD, GROWNON.


6.22.3.12 int

Syntax: Input Arguments: numerical integration along dimension 1 when data was sampled equidistantly with samplerate = 1/delta


6.22.3.13 intermutual

Syntax: Input Arguments: Calculates the mutual information of cin1 and cin2.


6.22.3.14 isempty

Syntax: Input Arguments: test if core contains no (valid) data


6.22.3.15 medianfilt

Syntax: Input Arguments: moving median filter


6.22.3.16 minus

Syntax: Input Arguments: subtract c2 from each columns of c1


6.22.3.17 movav

Syntax: Input Arguments: moving average


6.22.3.18 multires

Syntax: Input Arguments:


6.22.3.19 ndim

Syntax: Input Arguments: return number of dimensions, a scalar value has 0 dimensions


6.22.3.20 norm1

Syntax: Input Arguments: normalize each single column of a the core object to be within $ [$ low,upp$ ]$


6.22.3.21 norm2

Syntax: Input Arguments: normalize signal by removing it's mean and dividing by the standard deviation


6.22.3.22 plus

Syntax: Input Arguments: add c2 to each columns of c1


6.22.3.23 rang

Syntax: Input Arguments:


6.22.3.24 rms

Syntax: Input Arguments: compute root mean square value of each column of c1


6.22.3.25 scalogram

Syntax:


6.22.3.26 spec

Syntax: Input Arguments: compute power spectrum for real valued signals


6.22.3.27 spec2

Syntax: Input Arguments: spectrogramm of data using short time fft


6.22.3.28 surrogate1

Syntax: Input Arguments: create surrogate data for a scalar time series by randomizing phases of fourier spectrum
see : James Theiler et al.'Using Surrogate Data to Detect Nonlinearity in Time Series', APPENDIX : ALGORITHM I


6.22.3.29 surrogate2

Syntax: Input Arguments: create surrogate data for a scalar time series
see : James Theiler et al.'Using Surrogate Data to Detect Nonlinearity in Time Series', APPENDIX : ALGORITHM II


6.22.3.30 surrogate3

Syntax: Input Arguments: create surrogate data for a scalar time series by permuting samples randomly


6.22.3.31 uminus

Syntax: Input Arguments: negate time series


6.22.3.32 vertcat

Syntax: Input Arguments: catenate two timeseries verticaly
next up previous contents
Next: 6.23 Class achse Up: 6.22 Class core Previous: 6.22.2 Attributes   Contents
TSTOOL

Copyright © 1997-2009 DPI Göttingen