TSTOOL home page | TSTOOL documentation page | TSTOOL installation page | TSTOOL link page

next up previous contents
Next: About this document ... Up: manual Previous: 7.2.6 Frequently encountered errors

Bibliography

1
Ott, E. (1993), Chaos in Dynamical Systems, Cambridge Cambridge, University Press.

2
Thompson, J. M. T., H. B. Stewart (1986), Nonlinear Dynamics and Chaos, Chichester, Wiley.

3
Schuster, H. G. (1988), Deterministic Chaos, 2nd ed., Weinheim, VHC Publishers.

4
Bergé, P., Y. Pomeau, C. Vidal (1984), Order within Chaos: Towards a Deterministic Approach to Turbulence, New York, John Wiley and Sons.

5
Moon, F. C. (1992), Chaotic and Fractal Dynamics, New York, John Wiley and Sons.

6
Gaponov-Grekhov, A. V., M. I. Rabinovich, (1992), Nonlinearities in Action - Oscillations, Chaos, Order, Fractals, Berlin, Springer.

7
Lauterborn, W., J. Holzfuss, (1991) , ``Acoustic chaos'', Int. J. Bifurcation and Chaos, 1, pp.13-26.

8
Lauterborn, W., T. Kurz, U. Parlitz, (1997), ``Experimental Nonlinear Physics'', Int. J. Bifurcation and Chaos, 7, pp.2003-2033.

9
Lauterborn, W., U. Parlitz, (1988), ``Methods of chaos physics and their application to acoustics'', J. Acoust. Soc. Am., 84, pp.1975-1993.

10
Packard, N.H., J.P. Crutchfield, J.D. Farmer, R.S. Shaw (1980), ``Geometry from a time series'', Phys. Rev. Lett., 45, pp.712-716.

11
Takens, F. (1981), ``Detecting strange attractors in turbulence'', in Dynamical Systems and Turbulence, eds. Rand, D.A. & Young, L.-S. , Berlin, Springer, pp.366-381.

12
Kantz, H., & T. Schreiber (1997), Nonlinear Time Series Analysis, Cambridge University Press, Cambridge.

13
Abarbanel, H.D.I. (1996), Analysis of Observed Chaotic Data, Springer, New York.

14
Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., & Tsimring, L.S. (1993), ``The analysis of observed chaotic data in physical systems,'' Rev. Mod. Phys., 65(4), pp.1331-1392.

15
Grassberger, P., Schreiber, T. & Schaffrath, C. (1991), ``Nonlinear time sequence analysis,'' Int. J. Bif. Chaos, 1(3), pp.521-547.

16
Sauer, T., Y. Yorke, M. Casdagli (1991), ``Embedology'', J. Stat. Phys., 65, pp.579-616.

17
Sauer, T., J.A. Yorke (1993), ``How many delay coordinates do you need ?'', Int. J. Bifurcation and Chaos, 3, pp.737-744.

18
Casdagli, M., S. Eubank, J.D. Farmer, J. Gibson (1991), ``State space reconstruction in the presence of noise'', Physica D, 51, pp.52-98.

19
Gibson, J.F., J.D. Farmer, M. Casdagli, S. Eubank (1992), ``An analytic approach to practical state space reconstruction'' Physica D, 57, pp.1-30.

20
Broomhead, D.S., G.P. King (1986), ``Extracting qualitative dynamics from experimental data'', Physica D, 20, pp.217-236.

21
Landa, P.S., M.G. Rosenblum (1991), ``Time series analysis for system identification and diagnostics'', Physica D, 48, pp.232-254.

22
Palus, M., I. Dvorak (1992), ``Singular-value decomposition in attractor reconstruction: pitfalls and precautions'', Physica D, 55, pp.221-234.

23
Sauer, T.(1994), ``Reconstruction of dynamical systems from interspike intervals'', Phys. Rev. Lett., 72, pp.3811-3814.

24
Castro, R., T. Sauer (1997), ``Correlation dimension of attractors through interspike intervals'', Phys. Rev. E, 55(1), pp.287-290.

25
Racicot, D.M., A. Longtin (1997), ``Interspike interval attractors from chaotically driven neuron models'', Physica D, 104, pp.184-204.

26
Stark, J., D.S. Broomhead, M.E. Davies, J. Huke (1996), ``Takens embedding theorems for forced and stochastic systems'', in: Proceedings of the 2nd World Congress of Nonlinear Analysts, Athens, greece, July 1996.

27
Kennedy, M.P. (1994), ``Chaos in the Colpitts oscilator'', IEEE Trans. Circuits Syst., 41(11), pp.771-774.

28
Cenys, A., K. Pyragas (1988), ``Estimation of the number of degrees of freedom from chaotic time series'', Phys. Lett. A, 129, pp.227-230.

29
Buzug, Th., T. Reimers, G. Pfister (1990), ``Optimal reconstruction of strange Attractors from purely geometrical arguments'', Europhys. Lett., 13, pp.605-610.

30
Alecsic, Z. (1991), ``Estimating the embedding dimension'', Physica D, 52, pp.362-368.

31
Buzug, Th., G. Pfister (1992), ``Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors'', Phys. Rev. A, 45, pp.7073-7084.

32
Gao, J., Z. Zheng (1993), ``Local exponential divergence plot and optimal embedding of a chaotic time series'', Phys. Lett. A, 181, pp.153-158.

33
Gao, J., Z. Zheng (1994). ``Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series'', Phys. Rev. E, 49, pp.3807-3814.

34
Huerta, R., C. Santa Cruz, J.R. Dorronsore, V. Lòpez (1995), ``Local state-space reconstruction using averaged scalar products of dynamical-system flow vectors'', Europhys. Lett., 29, pp.13-18.

35
Liebert, W., K. Pawelzik, H.G. Schuster (1991), ``Optimal embeddings of chaotic attractors from topological considerations'', Europhys. Lett., 14, pp.521-526.

36
Kennel, M.B., R. Brown, H.D.I. Abarbanel (1992), ``Determining embedding dimension for phase-space reconstruction using a geometrical construction'', Phys. Rev. A, 45, pp.3403-3411.

37
Fredkin, D.R., J.A. Rice (1995), ``Method of false nearest neigbors: a cautionary note'', Phys. Rev. E, 51(4), pp. 2950-2954.

38
Cao, L. (1997), ``Practical method for determining the minimum embedding dimension of a scalar time series'', Physcai D, 110, pp. 43-50.

39
Kember, G., A.C. Fowler (1993), ``A correlation function for choosing time delays in phase portrait reconstructions'', Phys. Lett. A, 179, pp.72-80.

40
Rosenstein, M.T., J.J. Collins, C.J. De Luca (1994), ``Reconstruction expansion as a geometry-based framework for choosing proper delay times'', Physica D, 73, pp.82-98.

41
Frazer, A.M., H.L. Swinney (1986), ``Independent coordinates in strange attractors from mutual information'', Phys. Rev. A, 33, pp.1134-1140.

42
Frazer, A.M. (1989), ``Reconstructing attractors from scalar time series: a comparison of singular system and redundancy criteria'', Physica D, 34, pp.391-404.

43
Frazer, A.M. (1989), ``Information and entropy in strange attractors'', IEEE Trans. Info. Theory, 35, pp.245-262.

44
Liebert, W., H.G. Schuster (1989), ``Proper choice of the time delay for the analysis of chaotic time series'', Phys. Lett. A, 142, pp.107-111.

45
Martinerie, J.M., A.M. Albano, A.I. Mees, P.E. Rapp (1992), ``Mutual information, strange attractors, and the optimal estimation of dimension'', Phys. Rev. A, 45, pp.7058-7064.

46
Broomhead, D.S., J.P. Huke, M.R. Muldoon (1992), ``Linear filters and nonlinear systems'', J. Roy. Stat. Soc., B54, pp.373-382.

47
Davies, M.E., & K.M. Campbell (1996), ``Linear recursive filters and nonlinear dynamics'' Nonlinearity, 9, pp.487-499.

48
Kaplan, D., T. Schreiber (1996), ``Signal separation by nonlinear projections: The fetal electrocardiogram'', Phys. Rev. E, 53(5), pp.R4326-R4329.

49
Grassberger, P., R. Hegger, H. Kantz, C. Schaffrath, T. Schreiber (1993), ``On noise reduction methods for chaotic data'' CHAOS, 3, pp.127-141.

50
Kantz, H., T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister, C.G. Flepp, J. Simonet, R. Badii, E. Brun (1993), ``Nonlinear noise reduction: A case study on experimental data'', Phys. Rev. E, 48, pp.1529-1538.

51
Kostelich, E.J.,T. Schreiber (1993), ``Noise reduction in chaotic time-series data: A survey of common methods'', Phys. Rev. E, 48, pp.1752-1763.

52
Theiler, J., B. Galdrikian, A. Longtin, S. Eubank, J.D. Farmer (1992), ``Using surrogate data to detect nonlinearity in time series'' in: Nonlinear Modeling and Forecasting, eds. M. Casdagli and S. Eubank, SFI Studies in the Sciences of Complexity, Vol.XII (Reading, MA,Addison-Wesley), pp.163-188.

53
Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer (1992), ``Testing for nonlinearity in time series: the method of surrogate data'', Physica D, 58, pp.77-94.

54
Provenzale, A., L.A. Smith, R. Vio, G. Murante (1992), ``Distiguishing between low-dimensional dynamics and randomness in measured time series'', Physica D, 58, pp.31-49.

55
Smith, L. (1992), ``Identification and prediction of low dimensional dynamics'', Physica D, 58, pp.50-76.

56
Takens, F. (1993), ``Detecting nonlinearities in stationary time series'', Int. J. of Bifurcation and Chaos, 3, pp.241-256.

57
Wayland, R., D. Bromley, D. Pickett, A. Passamante (1993), ``Recognizing determinism in a time series'', Phys. Rev. Lett., 70, pp.580-582.

58
Palus, M., V. Albrecht,I. Dvorak (1993), ``Information theoretic test for nonlinearity in time series'', Phys. Lett. A, 175, pp.203-209.

59
Kaplan, D. (1994), ``Exceptional events as evidence for determinism'', Physica D, 73, pp.38-48.

60
Salvino, L.W., R. Cawley (1994), ``Smoothness implies determinism: a method to detect it in time series'', Phys. Rev. Lett., 73, pp.1091-1094.

61
Savit, R.M. Green (1991), ``Time series and dependent variables'', Physica D, 50, pp.95-116.

62
Rapp, P.E., A.M. Albano, I.D. Zimmerman, M.A. Jiménez-Moltaño (1994), ``Phase-randomized surrogates can produce spurious identifications of non-random structure'', Phys. Lett. A, 192, pp.27-33.

63
Theiler, J. (1995), ``On the evidence for low-dimensional chaos in an epileptic electroencephalogram'', Phys. Lett. A, 196, pp.335-341.

64
Schreiber, T., A. Schmitz (1996), ``Improved surrogate data for nonlinearity tests'', Phys. Rev. Lett., 77(4), pp.635-638.

65
Schreiber. T (1998), ``Constrained randomization of time series data'', Phys. Rev. Lett., 80(10), pp.2105-2108.

66
Judd, K., A. Mees (1995), ``On selecting models for nonlinear time series'', Physica D, 82, pp. 426-444.

67
Aguirre, L.A., S.A. Billings (1995), ``Identification of models for chaotic systems from noisy data: implications for performance and nonlinear filtering'', Physica D, 85, pp. 239-258.

68
Aguirre, L.A., E.M.A.M. Mendes (1996), ``Global nonlinear polynomial models: structure, term clustering and fixed points'', Int. J. Bifurc. Chaos, 6(2), pp.279-294.

69
Allie, S., A. Mees, K. Judd, D. Watson (1997), ``Reconstructing noisy dynamical systems by triangulation'', Phys. Rev. E, 55(1), pp. 87-93.

70
Szpiro, G.G. (1997), ``Forecasting chaotic time series with genetic algorithms'', Phys. Rev. E, 55(3), pp. 2557-2568.

71
Jaeger, L., H. Kantz (1997), ``Effective deterministic models for chaotic dynamics perturbed by noise'', Phys. Rev. E, 55(5), pp. 5234-5247.

72
Farmer, J.D., J.J. Sidorowich (1987), ``Predicting chaotic time series'', Phys. Rev. Lett., 59, pp.845-848.

73
Casdagli, M. (1989), ``Nonlinear Prediction of chaotic time series'', Physica D, 35, pp.335-356.

74
Brown, R. N.F. Rulkov, E.R. Tracy (1994), ``Modeling and synchronizing chaotic systems from time-series data'', Phys. Rev. E, 49, pp.3784-3800.

75
Grassberger, P., I. Procaccia (1983), ``On the characterization of strange attractors'', Phys. Rev. Lett., 50, pp.346-349.

76
Theiler, J. (1986), ``Spurious dimension from correlation algorithms applied to limited time-series data'', Phys. Rev. A, 34, pp.2427-2431.

77
Badii, R., A. Politi (1984), ``Hausdorff dimension and uniformity factor of strange attractors'', Phys. Rev. Lett, 52, pp.1661-1664.

78
Badii, R., A. Politi (1985), ``Statistical description of chaotic attractors'', J. Stat. Phys., 40, pp.725-750.

79
Grassberger, P. (1985), ``Generalizations of the Hausdorff dimension of fractal measures'', Phys. Lett. A, 107, pp.101-105.

80
Schreiber, T. (1995), ``Efficient neighbor searching in nonlinear times series analysis'', Int. J. Bifurcation and Chaos, 5, pp.349-358.

81
Holzfuss, J., G.  Mayer-Kress (1986), ``An approach to error-estimation in the application of dimension algorithms", in [82], pp.114-122.

82
Mayer-Kress, G. (ed.) (1986), Dimensions and Entropies in Chaotic Systems - Quantification of Complex Behavior, Berlin, Springer.

83
Theiler, J. (1990), ``Estimating fractal dimension'', J. Opt. Soc. Am. A, 7, pp.1055-1073.

84
Broggi, G. (1988), ``Evaluation of dimensions and entropies of chaotic systems'', J. Opt. Soc. Am. B, 5, pp.1020-1028.

85
Oseledec, V.I. (1968), ``A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems'', Trans. Moscow Math. Soc., 19, pp.197-231.

86
Benettin, G., L. Galgani, A. Giorgilli, J.-M. Strelcyn (1980), ``Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part II: Numerical application '' Meccanica, 15, pp.21-30.

87
Shimada, I., T. Nagashima (1979), ``A numerical approach to ergodic problems of dissipative dynamical systems'', Prog. Theor. Phys., 61, pp.1605-1616.

88
Eckmann, J.-P., D. Ruelle (1985), ``Ergodic theory of chaos and strange attractors'', Rev. Mod. Phys., 57, pp.617-656.

89
Geist, K., U. Parlitz, W. Lauterborn (1990), ``Comparison of Different Methods for Computing Lyapunov Exponents'', Prog. Theor. Phys., 83, pp.875-893.

90
Wolf, A., J.B. Swift, L. Swinney, J.A. Vastano (1985), ``Determining Lyapunov exponents from a time series'', Physica D, 16, pp.285-317.

91
Sano, M., Y. Sawada (1985), ``Measurement of the Lyapunov spectrum from a chaotic time series'', Phys. Rev. Lett., 55, pp.1082-1085.

92
Eckmann, J.-P., S.O. Kamphorst, D. Ruelle, S. Ciliberto (1986), ``Lyapunov exponents from time series'', Phys. Rev. A, 34, pp.4971-4979.

93
Stoop, R., P.F. Meier (1988), ``Evaluation of Lyapunov exponents and scaling functions from time series'', J. Opt. Soc. Am. B, 5, pp.1037-1045.

94
Holzfuss, J., W. Lauterborn (1989), ``Liapunov exponents from a time series of acoustic chaos'', Phys. Rev. A, 39, pp.2146-2152.

95
Stoop, R., J. Parisi (1991), ``Calculation of Lyapunov exponents avoiding spurious elements'', Physica D, 50, pp.89-94.

96
Zeng, X., R. Eykholt, R.A. Pielke (1991), ``Estimating the Lyapunov-exponent spectrum from short time series of low precision'', Phys. Rev. Lett., 66, pp.3229-3232.

97
Zeng, X., R.A. Pielke, R. Eykholt (1992), ``Extracting Lyapunov exponents from short time series of low precision'', Modern Phys. Lett. B, 6, pp.55-75.

98
Parlitz, U. (1993), ``Lyapunov exponents from Chua's circuit'', J. Circuits, Systems and Computers, 3,pp.507-523.

99
Kruel, Th.M., M. Eiswirth, F.W. Schneider (1993), ``Computation of Lyapunov spectra: Effect of interactive noise and application to a chemical oscillator'', Physica D, 63, pp.117-137.

100
Briggs, K. (1990), ``An improved method for estimating Liapunov exponents of chaotic time series'', Phys. Lett. A, 151, pp.27-32.

101
Bryant, P., R. Brown, H.D.I. Abarbanel (1990), ``Lyapunov exponents from observed time series'', Phys. Rev. Lett., 65, pp.1523-1526.

102
Brown, R., P. Bryant, H.D.I. Abarbanel (1991), ``Computing the Lyapunov spectrum of a dynamical system from an observed time series'', Phys. Rev. A, 43, pp.2787-2806.

103
Abarbanel, H.D.I., R. Brown, M.B. Kennel (1991), ``Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data'', Int. J. Mod. Phys. B, 5, pp.1347-1375.

104
Holzfuss, J, U. Parlitz (1991), ``Lyapunov exponents from time series'', Proceedings of the Conference Lyapunov Exponents, Oberwolfach 1990, eds. L. Arnold, H. Crauel, J.-P. Eckmann, in: Lecture Notes in Mathematics, Springer Verlag.

105
Parlitz, U. (1992), ``Identification of true and spurios Lyapunov exponents from time series'', Int. J. Bifurcation and Chaos, 2, pp.155-165.

106
Kadtke, J.B., J. Brush, J. Holzfuss (1993), ``Global dynamical equations and Lyapunov exponents from noisy chaotic time series'', Int. J. Bifurcation Chaos, 3, pp.607-616.

107
Gencay, R., W.D. Dechert (1992), ``An algorithm for the $ n$ Lyapunov exponents of an $ n$ -dimensional unknown dynamical system'', Physica D, 59, pp.142-157.

108
Eckmann, J.-P., D. Ruelle (1992), ``Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems'', Physica D, 56, pp.185-187.

109
Ellner, S., A.R. Gallant, D. McCaffrey, D. Nychka (1991), ``Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data'', Phys. Lett. A, 153,pp.357-363.

110
Fell, J., J. Röschke, P. Beckmann (1993), ``Deterministic chaos and the first positive Lyapunov exponent: a nonlinear analysis of the human electroencephalogram during sleep'', Biol. Cybern., 69, pp.139-146.

111
Fell, J., P. Beckmann (1994), ``Resonance-like phenomena in Lyapunov calculations from data reconstructed by the time-delay method'' Phys. Lett. A, 190, pp.172-176.

112
Sato, S., M. Sano, Y. Sawada (1987), ``Practical methods of measuring the generalized dimension and largest Lyapunov exponent in high dimensional chaotic systems'', Prog. Theor. Phys., 77, pp.1-5.

113
Kurths, J., H. Herzel (1987), ``An attractor in solar time series'', Physica D, 25, pp.165-172.

114
Dämmig, M., F. Mitschke (1993), ``Estimation of Lyapunov exponents from time series: the stochastic case'', Phys. Lett.  A, 178, pp.385-394.

115
Rosenstein, M.T., J.J. Collins, C.J. de Luca (1993), ``A practical method for calculating largest Lyapunov exponents from small data sets'', Physica D, 65, pp.117.

116
Kantz, H. (1994), ``A robust method to estimate the maximal Lyapunov exponent of a time series'', Phys. Lett. A, 185, pp.77-87.

117
Fujisaka, H.,T. Yamada (1993), ``Stability theory of synchronized motion in coupled-oscillator systems,'' Prog. Theor. Phys., 69, pp.32-46.

118
Singer, W. (1993), ``Synchronization of cortical activity and its putative role in information processing and learning,'' Annu. Rev. Physiol., 55, pp.349-374.

119
Ashwin, P., J. Buescu, I. Stewart (1994), ``Bubbling of attractors and synchronisation of chaotic oscillators,'' Phys. Lett. A, 193,pp.126-139.

120
Heagy, J.F., T.L. Carroll, L.M. Pecora (1994), ``Synchronous chaos in coupled oscillator systems,'' Phys. Rev. E, 50, pp.1874-1885.

121
Lai, Y.-C., C. Grebogi (1994), ``Synchronization of spatiotemporal chaotic systems by feedback control,'' Phys. Rev. E, 50,pp.1894-1899.

122
Collins, J.J.,I. Stewart (1994), ``A group-theoretic approach to rings of coupled biological oscillators,'' Biol. Cybern., 71, pp.95-103.

123
Lindner, J.F., B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara (1995), ``Array enhanced stochastic resonance and spatiotemporal synchronization,'' Phys. Rev. Lett., 75, pp.3-6.

124
Braiman, Y., W.L. Ditto, K. Wiesenfeld, M.L. Spano (1995), ``Disorder-enhanced synchronization,'' Phys. Lett. A 206, pp.54-60; Braiman, Y., J.F. Lindner, W.L. Ditto (1995), ``Taming spatiotemporal chaos with disorder,'' Nature, 378, pp.465-467.

125
Pecora, L.M., T.L. Carroll (1990), ``Synchronization in chaotic systems,'' Phys. Rev. Lett., 64, pp.821-824.

126
Brown, R., N.F. Rulkov, E.R. Tracy (1994), ``Modelling and synchronizing chaotic systems from experimental data,'' Phys. Lett. A, 194, pp.71-76.

127
Kocarev. L., U. Parlitz (1995), ``General approach for chaotic synchronization with applications to communication'', Phys. Rev. Lett., 74(25), pp.5028-5031.

128
Parlitz, U., L. Junge, L. Kocarev, (1996), ``Synchronization based parameter estimation from time series'', Phys. Rev. E, 54, pp.6253-6529.

129
Parlitz, U., L. Kocarev, T. Stojanovski, H. Preckel (1996), ``Encoding messages using chaotic synchronization,'' Phys. Rev. E, 53(5), pp.4351-4361.

130
Rulkov, N.F., K.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, (1995), ``Generalized synchronization of chaos in directionally coupled chaotic systems,'' Phys. Rev. E, 51, pp.980-994.

131
Kocarev, L., U. Parlitz (1996), ``Generalized synchronization, predictability and equivalence of uni-directionally coupled dynamical systems'', Phys.Rev.Lett., 76(11), pp.1816-1819.

132
Abarbanel, H.D.I., N.F. Rulkov, M.M. Sushchik (1996), ``Generalized synchronization of chaos: The auxiliary system approach'', Phys.Rev.E, 53(5), pp.4528-4535.

133
Parlitz, U., L. Junge, L. Kocarev (1997), ``Subharmonic entrainment of unstable period orbits and generalized synchronization'', Phys.Rev.Lett., 79(17), pp.3158.

134
Parlitz, U., L. Kocarev (1998), ``Synchronization of chaotic systems'', in: ``Control of Chaos'' Handbook (Ed. H.-G. Schuster), WILEY-VCH.

135
Sirovich, L. (1989), `Chaotic dynamics of coherent structures'', Physica D, 37, pp. 126-145.

136
Rico-Martinez, R., K. Krischer, I.G.  Kevrekidis, M.C. Kube, J.L. Hudson, (1992), ``Discrete - vs. continuous-time nonlinear signal processing of Cu electrodissolution data,'' Chem. Eng. Comm. 118, pp.25-48.

137
Parlitz, U. & G. Mayer-Kress (1995), ``Predicting low-dimensional spatiotemporal dynamics using discrete wavelet transforms'', Phys. Rev. E, 51(4), pp.R2709-R2711.

138
H.D.I. Abarbanel, Analysis of Observed Chaotic Data, (Springer Verlag, New-York/Berlin/Heidelberg, 1996);

139
S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman and A. Wu An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions,, (Proc. of the Fifth Annual ACM-SIAM Symp. on Discrete Algorithms, 1994, pp. 573-582)

140
A. Belussi and C. Faloutsos Estimating the Selectivity of Spatial Queries Using the `Correlation' Fractal Dimension, (Conference Proceedings of VLDB, Zurich, Switzerland, Sept. 1995, pp. 299-310)

141
S. Berchtold, C. Böhm, D.A. Keim and H.P. Kriegl A cost model for nearest neighbor search in high-dimensional data space, (PODS'97, Tuscon, AZ, pp. 78-86)

142
P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath and T. Schreiber On noise reduction methods for chaotic data, (Chaos, Vol. 3, Nr. 2, 1993, pp. 127-141)

143
T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman Fractal measures and their singularities: The characterization of strange sets, (Phys. Rev. A Vol. 33, Nr. 2, 1986, pp. 1141-1151)

144
H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, (Cambridge UP, Cambridge, 1997).

145
J. McNames A Nearest Trajectory Strategy for Time Series Prediction, (Proc. of the International Workshop on Advanced Black-box Techniques for Nonlinear Modeling, 1998, pp. 112-128)

146
U. Parlitz Nonlinear Time-Series Analysis, in (Nonlinear Modeling - Advanced Black-Box Techniques Eds. J.A.K. Suykens and J. Vandewalle Kluwer Academic Publishers, 1998, pp. 209-239)

147
V. Pestov On the geometry of similarity search : dimensionality curse and contraction of measure,, (Maths and comp. science research report, 99-02, VUW, January 1999, pp. 7), submitted for publication

148
T. Schreiber Efficient neighbor searching in nonlinear time-series analysis,, (Int. J. Bifurcation and Chaos, 5, pp. 349-358)

149
R. Sedgewick Algorithms in C++, Third Edition, (Addison-Wesley, 1998)

150
W. van de Water and P. Schram Generalized dimensions from near-neighbor information, (Phys. Rev. A, Vol. 37, Nr. 8, 1988, pp. 3318-3125)

151
L. F. Shampine and M. K. Gordon, ``The inital value problem''



TSTOOL

Copyright © 1997-2008 DPI Göttingen